The CAST-256 Encryption Algorithm

Carlisle Adams

CAST-256 is a symmetric cipher designed in accordance with the CAST design procedure as outlined in [A97]. It is an extension of the CAST-128 cipher and has been submitted as a candidate for NIST's Advanced Encryption Standard (AES) effort -- see http://csrc.nist.gov/encryption/aes/aes_home.htm for details.

This document contains several sections of the CAST-256 AES Submission Package delivered to NIST on June $9^{\text {th }}$, 1998. All complete submissions received by NIST will be made public in late August at the First AES Candidate Conference, but the following material is being made available now so that public analysis of the CAST-256 algorithm may begin (see, for example, http://www.ii.uib.no/~larsr/aes.html for the current status of submitted algorithms).

Many thanks are due to those who worked with me in the (long, challenging, frustrating, and very enjoyable!) design and analysis phases that ultimately led to the detailed specification given below: Howard Heys (Memorial University); Stafford Tavares (Queen's University); and Michael Wiener (Entrust®). As well, many thanks
are due to the two who did the various implementations on a variety of platforms (Reference C, Optimized C, Optimized Java, and even M6811 Assembler): Serge Mister and Ian Clysdale (both of Entrust).
[A97] C. Adams, "Constructing Symmetric Ciphers Using the CAST Design Procedure", in Selected Areas in Cryptography, Kluwer Academic Publishers, 1997, pp.71-104 (reprinted from Designs, Codes and Cryptography, vol. 12, no. 3, November 1997).

CAST-256
 Algorithm Specification

1. Algorithm Specification

1.1 CAST-128 Notation

The following notation from CAST-128 [A97b, A97c] is relevant to CAST-256.

- CAST-128 uses a pair of subkeys per round: a 5-bit quantity $k_{r_{i}}$ is used as a "rotation" key for round i and a 32-bit quantity $k_{m_{i}}$ is used as a "masking" key for round i.
- Three different round functions are used in CAST-128. The rounds are as follows (where D is the data input to the operation, $I_{a}-I_{d}$ are the most significant byte through least significant byte of I, respectively, S_{i} is the $i^{\text {th }} \mathrm{s}$-box (see following page for s-box definitions), and O is the output of the operation). Note that + and are addition and subtraction modulo $2^{32}, \oplus$ is bitwise eXclusive-OR, and \lrcorner is the circular left-shift operation.

Type 1:

$$
\begin{aligned}
& \left.I=\left(\left(k_{m_{i}}+D\right)\right\lrcorner k_{r_{i}}\right) \\
& O=\left(\left(S_{1}\left[I_{a}\right] \oplus S_{2}\left[I_{b}\right]\right)-S_{3}\left[I_{c}\right]\right)+S_{4}\left[I_{d}\right]
\end{aligned}
$$

Type 2:

$$
\begin{aligned}
& \left.I=\left(\left(k_{m_{i}} \oplus D\right)\right\lrcorner k_{r_{i}}\right) \\
& O=\left(\left(S_{1}\left[I_{a}\right]-S_{2}\left[I_{b}\right]\right)+S_{3}\left[I_{c}\right]\right) \oplus S_{4}\left[I_{d}\right]
\end{aligned}
$$

Type 3:

$$
\begin{aligned}
& \left.I=\left(\left(k_{m_{i}}-D\right)\right\lrcorner k_{r_{i}}\right) \\
& O=\left(\left(S_{1}\left[I_{a}\right]+S_{2}\left[I_{b}\right]\right) \oplus S_{3}\left[I_{c}\right]\right)-S_{4}\left[I_{d}\right]
\end{aligned}
$$

Let f_{1}, f_{2}, f_{3} be keyed round function operations of Types 1,2 , and 3 (respectively) above.

- CAST-128 uses four round function substitution boxes (s-boxes), $S_{1}-S_{4}$. These are defined as follows (entries (written in hexadecimal notation) are to be read left-toright, top-to-bottom).

S-Box S_{1}

30 fb 40 d 4 bfd4af27 28683b6f a1c9e0d6 66 db 40 c 8 b82cbaef 4b6d2f7f fd45c240 882240 f2 b1b6ab8a 3a787d5f 38901091 d7894360 64459 eab 81383f05 35e79e13 548300d0 6b54bfab cfa4bd3f 954329de 7b5a41f0 bf 6bb16c 75bb0fc3 3f04442f c69dff09 f01144f9 580304 f0 98a52666 af1fbda7 474d6ad7 bd91e046 1a69e783
$9 f a 0 f f 0 b$ $9 f a 0 f f 0 b 6 b e c c d 2 f$ 3f258c7a $88 b b b d b 5$ e2034090-98d09675 c07fd059 346 c 4819 a784392f d751d159 50bb64a2 ad31973f 0c6e4f38 c71358dd 6276a0b5 c6b505eb 425c750d 3f328b82 6963c5c8 47da91d0 00322a3c 2b0b1426 2deaa3e2 adbe4528 d37cfbad 6 a 70 fb 78 98511 bfb 6188b153 c75b65f0 d2240eb1 ca042cf1 5648f725 d4234870 7c0c5e5c 9a56456e 02cc4843

e2034090

 ff2379c8 61b76d87 $004 d f f 2 f$ 6ff7f0ed d2664910 c4f6d02e a 4 e4bfd 7 6385c545 19a6fcdf 84 c 7 cb 8 c 93b39e26 $7718 c f 82$ 76 cb 5 ad 6 f40f9086 bf64cddf ab4cc9d7 9e204d02 d8710f69 1b069505 0d03d9c9 4 ffbcc35 e0397a2e d9db40d8 9675b3fd 011a37ea ff5e569d a7870bf3 d1231959 dc39200c a2f7c579$98 d 09675$
$775 f 50 e 2$ 22540 f2f 2 db 9 d 2 de 5a097a1f bee5812d b 55fc8165 4 f5ba272 5 110f935d 7a42206a 2ad75a0f 8 187184c9 59a2cea6 d49974c9 a7e2419e ba57a68e 449 ccd 82 c8bd25ac aa51c90f 41ece491 d4df39de b58bcf6a 5727 cb 799 ec0e7779 a3ac3755 8 dbfaadb 3 0ced63d0 2d3b4d79 381b7298 20c8c571 429ef47d
le213f2 6e63a0f 43c340d3 2abe32e1 97943 fac 827b68d0 b7332290 d5b1caad 564c1d2f $57538 a d 5$ 29f9d4d5 874a1427 6c00b32d 04 ee 002 e ca180dcf 31366241 75 c 6372 b f7fbe265 eadf55b3 aa786bf6 b4c332e6 e01063da e11f0abc 9ceb418f 4744 ead4 d47c27af 35ba3e4a 7c63b2cf 42e04198 f5d2f4db 962bdalc 427b169c 5ac9f049

9 c 004 dd 3 15c361d2 df2f8656 aa54166b 4a97c1d8 90ecf52e e93b159f a1ac2dae c59c5319 6a390493 f61b1891 a2d1936b 73e2bb14 89fe78e6 380782d5 051 ef 495 50afd341 ab85c5f3 d5bd9e98 22513f1e $032268 d 4$ 4736f464 bfc5fe4a 1cacd68d b11c3274 51c85f4d 3526ffa0 700b45e1 0cd0ede 7 ab838653
dd8f0f00 5c8165bf

S-Box S_{2}

1f201094 ef0ba75b ada7ef79 4e1d7235 a0b52f7b d1da4181 1fc41080 e113c85b 3d63cf73 602f64a4 10843094 fc884f69 e8256333 c5d655dd 54f03084 eccf01db 81ed6f61 5e552d25 a20c3005 ee41e729 6e1d2d7c

69e3cf7e 393f4380 d55a63ce de0436ba ee15b094 e9ffd909 f997f1c1 d37ac6a9 d7503525 d4d87e87 1bbc4635 f46f6ffe ef0e0088 128d8098 $77840 b 4 d$ a31aa153 b6803d5c b45e1378 79d2951c b9de2fcb b9de2fcb
a5e6cf7b fe5830a4 f7ea615f 5c672b21 9e81032d a1ff3b1f 2 3559648d fed33fb4 a1b6a801 8 dadc4755 b af77a709 3 de18639b c60d894c 0cc6c9e9 0beef 1e6685f3 f33401c6
$f e 61 c f 7 a$
$99 c 430 e f$
dc440086
$01420 d d b$
$98 d e 8 b 7 f$
62143154
$071 f 6181$
$2701 f 50 c$
$208 c f b 6 a$
$8 a 45388 c$
$c e 280 a e 1$
$84 d b 26 a 9$
$b 5625 d b f$
$33 b 4 a 34 c$
$881 c a 122$
$488 c b 402$
$0 b e e f f 53$
$f 33401 c 6$
ec5207a 5f0c0794 ef944459 e4e7ef5b 77e83f4e 0d554b63 39f7627f $99847 a b 4$ 8f458c74 $1 d 804366$ 27e19ba5 e0b56714 68561be6 $397 b c 8 d 6$ b96726d1 1 ba 4 fe5b e3214517 30a22c95

[^0]$73 f 98417$ a1269859 ec645c44 52c877a9 cdff33a6 a02b1741 7cbad9a2 2180036f 50d99c08 cb3f4861 c26bd765 64a3f6ab 80342676 cdf0b680 7af75673 db2ffd5e 8 b8da230c 80823028 c72feffa 61d9b8c6 dc8637a0 2d6a77ab 5483697b b284600c 8f5ea2b3 43d79572 7e6dd07c 31eef84d 7e0824e4 a11631c1 30f66f43 306af97a 02f03ef8 dcdef3c8 d35fb171 82c570b4 d8d94e89 b7ffce3f 08dc283b 9fc393b7 a7136eeb 821fd216 095c6e2e 85196048 8c4bacea dcb1c647 ac4c56ea 0a036b7a 4fb089bd 06dfdf1e 6c6cc4ef

80342676 2ccb49eb b3faec54 99319ad5 088a1bc8 8b1c34bc 43daf65a c6bcc63e db 92 f2fb 833860d4 3ebd81b3 649da589 7160a539 73bfbe70

25a75 7

 $846 a 3 b a e$ 157fd7fa c242fa0f bec0c560 301e16e6 f7e19798 1a513742 5eea29cb $0 d 23 e 0 f 9$ 230eabb0 345415ee4e6d1fc 20c710e6 8ff77888 ee5d60f6 ef8579cc d152de58 a7e3ebb0 c68e4906 61a3c9e8 bca8f54d 273be979 b0ffeaa6 7619b72f 8f1c9ba4 ef6828bc 520365d6 145892f5 91584f7f 6c387e8a 0ae6d249 6438bc87 f0b5b1fa $5 c 038323$ 3e5d3bb9 838776054523 ecf1

S-Box S_{3}

8defc240 beb1f9bf 11107d9f $553 f b 2 c 0$ 4e1a8302 a8c01db7 99 b 03 dbf b843c213 a747d2d0 8c96fdad efbd7d9b 23efe941 f8af918d ef303cab 8b907cee 5c76460e 1f97c090 68cc7bfb 4b39fffa 61bd8ba0 285ba1c8 1 f081fab d2d02dfe 3a609437 a2d02fff a2048016 947b0001 6ea22fde 67214 cb 8 5727c148 282f9350 f7baefd5

25fa5d9f eb903dbf eefbcaea e8cf1950 07647 db 9 489ae22b $579 f c 264$ b5dbc 64b 6c0743f1 1651192e 5d2c2aae a672597d ada840d8 a903f12e 60270df2 4e48f79e 8f616ddf $984 f a f 28$ b51fd240 00ea983b 081bdb8a d90f2788 ba39aee 9 d11e42d1 3c62f44f 108618ae f8ef5896 ec00c9a9 d2bf60c4 97573833 570075d2 5f08ae2b b1e583d1 2be98a1d 8 8334b362 d91d1120 4142ed9c a4315c11
e810c907 47607fff 51 df 07 ae 3d4f285e 125 e 3 fb c 8e57140e 33 f2bd3f5f 55819d99 0 feddd5f 58c31380 50da88b8 45f54504 0276e4b6 e29d840e 92dc560d e566b4a1 fd47572c b938ca15 9 5de5ffd4 faf7933b 127ea392 1 e805d231 f9ff2889 6 95155b67 4 0a874b49 494a488c 0a874b49 d773bc40 50b4ef6d 07478cd1 de0f8f3d 72f87b33 8942019e 4264a5ff e5c98767 cf1febd2 $7 f 10 b d c e$ f90a5c38 20e1be24 af96da0f 2b6d8da0 642b1e31 $83323 e c 5$ dfef4636 920e8806 baafa820 $21 f f f c e e$ 3373f7bf $40 f f f 7 c 1$ a197c81c 2f7fe850 5f98302e 8427f4a0 fa5d7403 94 fd6574 842f7d83 224d1e20 c3e9615e f76cedd9 97b03cff dd7ef86a 6d498623 10428 db 7 428929fb 694bcc11 494a488c d773bc40
$07478 c d 1$ $72 f 87 b 33$
$4264 a 5 f f$
$0 f f 04$ 0ff0443d 68458425 9c305a00 a133c501

369fe44b 8c1fc644 aececa90 f0ad0548 e13c8d83 927010d5 fade82e0 a067268b 8272792e 825b1bfd 9255c5ed 1257a240 8c9f8188 a6fc4ee8 c982b5a5 1fb78dfc 8e6bd2c1 437be59b 4a012d6e c5884a28 ccc36f71 d7c07f7e 02507fbf 5afb9a04 $727 c c 3 c 40 a 0 f b 4020 f 7 f e f 82$ leac5790 796fb449 8252dc15 e83ec305 4f91751a 925669c2 927985b2 8276dbcb 02778176 $340 c e 5 c 8$ 96bbb682 93b4b148 8437aa88 7d29dc96 2756d3dc 3cf8209d 6094d1e3 cd9ca341 bda8229c 127dadaa 438a074e 3dc2c0f8 8d1ab2ec 64380e51 76a2e214 b9a40368 925d958f 193cbcfa 27627545 825cf47a 8272a972 9270c4a8 127de50b b4fcdf82 4fb66a53 0e7dc15b 236a5cae 12deca4d 2c3f8cc5 b9b6a80c 5c8f82bc 89d36b45 7c34671c 02717ef6 4feb5536 $006 e 1888$ a2e53f55 b9e6d4bc abcc4f33 7688c55d 7b00a6b0 856302e0 72dbd92b ee971b69 f1ac2571 cc8239c2 $606 e 6 d c 660543 a 49$ 99833be5 600d457d 52bce688 1b03588a e9d3531c ee353783

S-Box S_{4}

9db30420 7e287aff 28147 f5f ee4d111a 80530100 ce84ffdf 2649 abdf abe0502e 4d351805 a5bf6d8e $26486 e 3 e$ 69dead38

	,	20		5	35	213d42f6	
	5 C	崖	87908d9	d0dbd8		e9b640	
				71eae2a1	f9af36e		
532	$58 \pm d 7 e b 6$	1ee900	fc2	f4990fc5		01d7b95	
973f6		32d9521		08415			
				d49e2ce7	-	60acd86	
079103	dea03		df				
		29					
60		1987832f		a99144f8	-	492 fc295	
	9bd3ddda	df7e0521			e6		
	-			79			

1.2 CAST-256 Notation

The following notation is employed in the specification of CAST-256.
Let f_{1}, f_{2}, f_{3} be as defined for CAST-128.
Let $\beta=(A B C D)$ be a 128 -bit block where A, B, C, and D are each 32 bits in length.
Let " $\beta \leftarrow Q_{i}(\beta)$ " be short-hand notation for the following:

$$
\begin{aligned}
& C=C \oplus f_{1}\left(D,{\left.k_{r_{0}}{ }^{(i)}, k_{m_{0}}{ }^{(i)}\right)}\right. \\
& B=B \oplus f_{2}\left(C,{k_{r_{1}}}^{(i)},{\left.k_{m_{1}}{ }^{(i)}\right)}\right. \text {) } \\
& A=A \oplus f_{3}\left(B,{\left.\left.k_{r_{2}}{ }^{(i)}, k_{m_{2}}{ }^{(i)}\right), ~\right) ~}{ }^{(i)}\right.
\end{aligned}
$$

Let " $\beta \leftarrow \bar{Q}_{i}(\beta)$ " be short-hand notation for the following:

$$
\begin{aligned}
& D=D \oplus f_{1}\left(A,{\left.k_{r_{3}}{ }^{(i)}, k_{m_{3}}{ }^{(i)}\right)}{ }^{(1)}\right. \\
& A=A \oplus f_{3}\left(B,{k_{r_{2}}}^{(i)},{\left.k_{m_{2}}{ }^{(i)}\right)}{ }^{(i)}\right. \\
& B=B \oplus f_{2}\left(C,{k_{r_{1}}}^{(i)},{\left.k_{m_{1}}{ }^{(i)}\right)}\right)
\end{aligned}
$$

$(Q(\cdot)$ is called a "forward quad-round" and $\bar{Q}(\cdot)$ is called a "reverse quad-round".)

Let $k_{m}{ }^{(i)}=\left\{k_{m_{0}}{ }^{(i)}, k_{m_{1}}{ }^{(i)}, k_{m_{2}}{ }^{(i)}, k_{m_{3}}{ }^{(i)}\right\}$ be the set of masking keys for the $i^{\text {th }}$ quad-round, where $k_{m_{j}}{ }^{(i)}$ is a 32-bit masking key for f_{1}, f_{2}, or f_{3} (as specified above).

Let $\kappa=(A B C D E F G H)$ be a 256 -bit block where A, B, \ldots, H are each 32 bits in length.
Let " $\kappa \leftarrow \omega_{i}(\kappa)$ " be short-hand notation for the following:

$$
\begin{aligned}
& G=G \oplus f_{1}\left(H, t_{r_{0}}{ }^{(i)}, t_{m_{0}}{ }^{(i)}\right) \\
& F=F \oplus f_{2}\left(G, t_{r_{1}}{ }^{(i)}, t_{m_{1}}{ }^{(i)}\right) \\
& E=E \oplus f_{3}\left(F, t_{r_{2}}{ }^{(i)}, t_{m_{2}}{ }^{(i)}\right) \\
& D=D \oplus f_{1}\left(E, t_{r_{3}}{ }^{(i)}, t_{m_{3}}{ }^{(i)}\right) \\
& C=C \oplus f_{2}\left(D, t_{r_{4}}{ }^{(i)}, t_{m_{4}}{ }^{(i)}\right) \\
& B=B \oplus f_{3}\left(C, t_{r_{5}}{ }^{(i)}, t_{m_{5}}{ }^{(i)}\right) \\
& A=A \oplus f_{1}\left(B, t_{r_{6}}{ }^{(i)}, t_{m_{6}}{ }^{(i)}\right) \\
& H=H \oplus f_{2}\left(A, t_{r_{7}}{ }^{(i)}, t_{m_{7}}{ }^{(i)}\right)
\end{aligned}
$$

($\omega(\cdot)$ is called a "forward octave".)

Let " $k_{r}{ }^{(i)} \leftarrow \kappa$ " be short-hand notation for the following:

$$
k_{r_{0}}{ }^{(i)}=5 L S B(A), k_{r_{1}}{ }^{(i)}=5 L S B(C), k_{r_{2}}{ }^{(i)}=5 L S B(E), k_{r_{3}}{ }^{(i)}=5 L S B(G)
$$

where $5 \operatorname{LSB}(x)$ denotes "the five least significant bits of x ".
Let " $k_{m}{ }^{(i)} \leftarrow \kappa$ " be short-hand notation for the following:

$$
k_{m_{0}}{ }^{(i)}=H, \quad k_{m_{1}}{ }^{(i)}=F, \quad k_{m_{2}}{ }^{(i)}=D, k_{m_{3}}{ }^{(i)}=B
$$

1.3 The CAST-256 Cipher

$\beta=128$ bits of plaintext.

$$
\begin{gathered}
\text { for }(i=0 ; i<6 ; i++) \\
\beta \leftarrow Q_{i}(\beta) \\
\text { for }(i=6 ; i<12 ; i++) \\
\quad \beta \leftarrow \bar{Q}_{i}(\beta)
\end{gathered}
$$

128 bits of ciphertext $=\beta$

Round Key Re-Ordering for Decryption

The cipher employs a 256 -bit primary key K. Decryption is identical to encryption except that the sets of quad-round keys $k_{r}{ }^{(i)}, k_{m}{ }^{(i)}$ derived from K are used in reverse order as follows.

```
for(i=0;i<12;i++){
    k}\mp@subsup{|}{r\mathrm{ rew }}{}\mp@subsup{}{}{(i)}=\mp@subsup{k}{r}{(11-i)
    \mp@subsup{k}{\mp@subsup{m}{\mathrm{ new }}{}}{(i)}=\mp@subsup{k}{m}{(11-i)}
}
```


Initialization:

$$
\begin{aligned}
& c_{m}=2^{30} \sqrt{2}=5 A 827999_{16} \\
& m_{m}=2^{30} \sqrt{3}=6 E D 9 E B A 1_{16} \\
& c_{r}=19 \\
& m_{r}=17
\end{aligned}
$$

$$
\begin{aligned}
& \text { for }(i=0 ; i<24 ; i++) \\
& \text { for }(j=0 ; j<8 ; j++)\{ \\
& t_{m_{j}}{ }^{(i)}=c_{m} \\
& c_{m}=\left(c_{m}+m_{m}\right) \bmod 2^{32} \\
& t_{r_{j}}{ }^{(i)}=c_{r} \\
& c_{r}=\left(c_{r}+m_{r}\right) \bmod 32 \\
& \text { \} }
\end{aligned}
$$

Key Schedule:
$\kappa=A B C D E F G H=256$ bits of primary key, K.

$$
\begin{aligned}
\text { for }(i= & 0 ; i<12 ; i++)\{ \\
& \kappa \leftarrow \omega_{2 i}(\kappa) \\
& \kappa \leftarrow \omega_{2 i+1}(\kappa) \\
& k_{r}{ }^{(i)} \leftarrow \kappa \\
& k_{m}{ }^{(i)} \leftarrow \kappa
\end{aligned}
$$

Note:

$$
\begin{aligned}
& (|K|=128) \Rightarrow(E=F=G=H=0) \\
& (|K|=160) \Rightarrow(F=G=H=0) \\
& (|K|=192) \Rightarrow(G=H=0) \\
& (|K|=224) \Rightarrow(H=0)
\end{aligned}
$$

2. Design Rationale

2.1 Overall Structure

The fundamental mechanism for the expansion of a 64-bit block size to a larger block size is the generalization of the basic Feistel network (Schneier and Kelsey [SK96] have referred to the structure used here as an "incomplete" Feistel network). The motivation is as follows. In a traditional Feistel network (such as DES), rather than thinking of the exchange of left and right halves in each round as a "swap", it may be viewed as a circular right-shift of 32 bits. Such a view allows one to consider a cipher with a block size of $32 n$ bits, which uses the same round function as the original cipher but requires n rounds (instead of 2) to input all bits of the block to the round function.

A picture may help to clarify the operation.

Figure 1

The left-most diagram is the "traditional" Feistel network. If this describes two rounds of DES, then L and R are each 32 bits in length and the cipher has a 64-bit block size. Continuing the illustration, the middle diagram describes an extended Feistel network for a cipher with a 96 -bit block size, and the right-most diagram describes the structure of a cipher with a 128 -bit block size. In each case, we may think of the number of rounds shown as a basic "unit" (in terms of submitting all input bits to the round function); the actual number of rounds chosen for the full cipher will be some multiple of this "unit" (e.g., for DES, the multiple is 8).

2.2 Decryption Considerations

The disadvantage of the generalized structure given above is that it requires a separate structure for decryption (since data must be left-shifted, rather than right-shifted, in each round in order to go backwards through the rounds). By contrast, with the "traditional" Feistel network decryption and encryption are identical except for a change in the ordering of the round keys so no separate structure is needed. Clearly, in constrained environments (such as hardware or firmware implementations that are very resourcelimited) requiring two structures is unattractive.

A simple solution to the above concern is to design the structure such that if there are r rounds in the full cipher, the first $r / 2$ rounds use right-shifting (as shown in the diagram above) and the last $r / 2$ rounds use left-shifting. In this way, the desirable feature of "traditional" Feistel networks with respect to decryption (i.e., that decryption is identical to encryption, requiring only a reversal of the round keys) is preserved. This simplifies implementation and operation of the cipher and helps to make its use feasible in resourcelimited environments.

2.3 Choice of Round Function

One of the very attractive features of the generalized structure given above is that it enables direct re-use of the round function from the "traditional" Feistel network. Within the class of DES-like ciphers, it is well known that increasing the size of the round function typically involves increasing the size of its component substitution boxes (sboxes); it is also well known that increasing s-box size is generally difficult. For those ciphers that already employ large s-boxes, size increases can be a monumental task. [As a particular example, doubling the input and output sizes of a carefully-constructed 8×32 s-box may require a work factor of roughly 2^{64} steps (more than is necessary to break DES by exhaustive search!), aside from the fact that the resulting s-box grows from 4 Kbytes to more than half a million bytes of memory.] Being able to re-use the original round function is therefore very desirable. The important technical decision, however, is which "traditional" Feistel network round function to use in the generalized network.

The CAST-128 set of round functions has a number of appealing features.

- Firstly, the component bent-function-based s-boxes are designed according to a mathematical procedure which produces substitution boxes with several important cryptographic properties (such as high nonlinearity, low XOR difference distribution table values, good higher-order Strict Avalanche Criterion, and good higher-order (Output) Bit Independence Criterion) [A97b].
- Secondly, the use of both a "masking" key and a "rotation" key ensures that the key entropy is higher than the data entropy in each round (following the recommendation of [RPD97]) and appears to make the construction of iterative statistical attacks such as linear and differential cryptanalysis significantly more difficult (or impossible) [A97b].
- Thirdly, the mixing of operations from different algebraic groups (addition modulo 2 and addition / subtraction modulo 2^{32}) appears to be effective not only in reducing the probability of the round differential [AM97, O'C98], but in reducing the possibility of higher-order differential attacks as well [MSK98].
- Finally, mixing the order of the group operations (i.e., by varying the order of round functions throughout the cipher, as is done in CAST-128) appears to frustrate the practical construction of iterative characteristics.

In summary, then, the extensive analysis done on the CAST design procedure (including focused attention within several master's- and doctoral-level theses on symmetric cipher design and analysis) lends confidence to its choice as the round function for this generalized Feistel network.
[See CAST-256: Algorithm Analysis below for a partial list of published work which discusses or analyzes various aspects of the CAST design procedure. For one significant example of unpublished work that has been done on CAST, the Communications Security Establishment, after extensive analysis, has determined and will formally state that the CAST-128 algorithm is suitable for the protection of all levels of Designated information within the Government of Canada. Please see the attached letter dated June $5^{\text {th }}, 1998$, and note that "CAST5" is the name used for "CAST-128" when specific key lengths are explicitly intended (see [A97c], Section 2.5).

2.4 Number of Rounds

Given that the basic unit (see "Overall Structure" above) in DES is a "double round" and that a multiple of 8 is used to give the full 16 -round cipher, it is reasonable to conclude that a 128-bit block size, with a "quad-round" as the basic unit, should consist of at least 32 rounds for the full cipher. It is important to note, however, that a cipher being constructed as a candidate for AES consideration must support not only twice the block size of CAST-128, but twice the key size as well. A deeper security analysis (see attached document, CAST-256: Algorithm Analysis) suggests that 48 rounds (i.e., 12 "quad rounds") provides security protection commensurate with the parameters of the desired cipher.

2.5 Key Schedule

Key scheduling (deriving a set of round keys from an initial key) is an extremely important aspect of cipher design since sub-optimal key schedules can lead to exploitable weaknesses in the cipher (including weak keys, equivalent keys, complementation properties, and susceptibility to related-key attacks), and overly-complicated key schedules can lead to prohibitively-long set-up times (limiting the use of the cipher in some environments).

The design philosophy chosen for the CAST-256 key schedule is identical to that chosen for the CAST-256 cipher itself: the key schedule essentially describes a generalized Feistel network with a 256-bit block size. A simple (but fixed) set of round keys is used to key this network and the CAST-256 initial key is used as the plaintext input. Some of the output bits of selected rounds during this "encryption" define the actual round keys for the CAST-256 cipher. Important features of this key scheduling approach include the following.

- The inherent strength of the generalized Feistel network is used in the key schedule to create round keys, increasing confidence that the set of key values (comprised of the generated round keys and the CAST-256 initial key) will appear to be pair-wise independent to any statistical analysis.
- If an attack can be mounted that derives four or more full round keys (i.e., full masking keys and the corresponding rotation keys) from the CAST-256 cipher, it still appears to require a computational effort of at least $2^{256-(4 * 32)-(4 * 5)}=2^{108}$ guesses to derive the CAST-256 initial key from this information.
- Since the key schedule describes a generalized Feistel network, it is extremely unlikely that key collisions can occur. The key schedule defines a cipher with a fixed key (i.e., a permutation over the input space) so for two different CAST-256 initial keys to produce identical sets of round keys, the different cipher inputs would have to map to round function outputs (in every relevant round) that differed only in the 108 bits not used to produce round key bits. The probability of this occurring in each octave that produces round keys is $2^{108} / 2^{256}=2^{-148}$, so the probability that this occurs over the full set of round keys is $2^{-148^{*} 12}=2^{-1776}$ (essentially zero, since there are only 2^{256} possible initial keys).
- The key scheduling operation requires the equivalent of four CAST-256 encryption operations to produce a full set of round keys. This ratio is not prohibitive for most environments and compares favorably with many current implementations of DES.

The key schedule chosen for CAST-256 appears to have a number of desirable cryptographic features and takes into account much of the research into key schedule design and analysis over the past two decades (see, for example, [A94] and the references included in [A97]).

2.6 Conclusions

A number of alternatives exist for doubling the block size of a cipher from 64 bits to 128 bits, including the following.

- Feistel network. In such a design, the round function of the Feistel network is the original 64-bit cipher, which may itself be a Feistel network (this is a simple extension of ideas presented in, for example, [LR88, L96]).
- Substitution-Permutation (SP) network [F73]. In such a design, two parallel implementations of the original cipher are used as the substitution layers; these are interspersed with an extended permutation layer (i.e., a permutation which is the width of the desired block size).
- "Fenced" Construction [R96]. In such a design, two parallel implementations of the original cipher are surrounded by specially-constructed mixing operations, which in turn are surrounded by a layer of substitution boxes.

However, it was felt that all the alternatives considered had one or more drawbacks which made them somewhat less attractive as AES submission candidates. For example, the Feistel network suffers significant security degradation if one or two rounds may be "peeled off" by some attack (not an uncommon situation) since the entire outer network would likely consist of only four or six rounds (for performance reasons). The SP network may be subject to poor encryption / decryption performance since even two substitution layers with a permutation layer in between (the minimum possible configuration) halves the speed of the original cipher; a larger number of layers decreases performance significantly beyond this. Finally, the Fenced construction has non-trivial design and implementation impacts with the need for solid theoretical justification for the particular mixing operations used and the need for sufficient processing time and memory for the pseudo-random generation and storage of the necessary s-boxes.

The approach taken in this proposal to achieve block size doubling (i.e., the use of a generalized Feistel network) appears to be the simplest and most elegant of the various alternatives. It has none of the drawbacks listed above, is straightforward to understand and to analyze, and builds on the confidence gained from the extensive literature on ciphers based on Feistel networks. Furthermore, it allows unmodified re-use of a round function with a number of attractive cryptographic features, and suggests an intuitive architecture for the associated key scheduling algorithm.

We conclude that the rationale for CAST-256 is solid, resting on firm theoretical results and immediately appealing, defensible, concepts for every aspect of the cipher design. The resulting algorithm has good performance, reasonable code and memory size, and high security (according to all analysis conducted to date); it thus appears to meet all the requirements for an AES submission candidate.

3. Bit Naming / Numbering Convention Provided

True (needed only in section 1.1 CAST-128 Notation above, where most- to leastsignificant bytes of a 32-bit word are specified).

4. No Parity Bits Specified in the Key Definition

True.

5. References

[A94] C. Adams, "Simple and Effective Key Scheduling for Symmetric Ciphers", in Workshop Record of the Workshop on Selected Areas in Cryptography (SAC '94), Kingston, Canada, May 1994, pp.129-133.
[A97] C. Adams, "DES-80", in Workshop Record of the Workshop on Selected Areas in Cryptography (SAC '97), Ottawa, Canada, August 1997, pp.160-171.
[A97b] C. Adams, "Constructing Symmetric Ciphers Using the CAST Design Procedure", in Selected Areas in Cryptography, E. Kranakis and P. Van Oorschot (ed.), Kluwer Academic Publishers, 1997, pp.71-104 (reprinted from Designs, Codes and Cryptography, vol. 12, no. 3, November 1997).
[A97c] C. Adams, "The CAST-128 Encryption Algorithm", RFC 2144, May 1997.
[AM97] C. Adams and S. Mister, Preliminary experimental results concerning the mixing of operations from different algebraic groups and the contents of the resulting XOR difference distribution table (unpublished).
[F73] H. Feistel, "Cryptography and Computer Privacy", Scientific American, vol. 228, no. 5, 1973, pp.15-23.
[L96] S. Lucks, "Faster Luby-Rackoff Ciphers", in Proceedings of the Third International Workshop on Fast Software Encryption, Cambridge, UK, February 1996, Springer, LNCS 1039, pp.189-203.
[LR88] M. Luby and C. Rackoff, "How to Construct Pseudorandom Permutations From Pseudorandom Functions", SIAM Journal of Computing, vol. 17, no. 2, April 1988, pp.373-386.
[MSK98] S. Moriai, T. Shimoyama, and T. Kaneko, "Higher Order Differential Attack of a CAST Cipher", Proceedings of the Fifth International Workshop on Fast Software Encryption, Paris, France, March 1998, LNCS 1372, Springer, pp.1731.
[O'C98] L. O'Connor, Preliminary analytical results concerning the mixing of operations from different algebraic groups and the maximum value of the resulting XOR difference distribution table (unpublished).
[R96] T. Ritter, "The Fenced DES Cipher: Stronger Than DES But Made From DES", http://www.io.com/~ritter/FENCED.HTM, November 10, 1996.
[RPD97] V. Rijmen, B. Preneel, and E. De Win, "On Weaknesses of Non-surjective Round Functions", in Selected Areas in Cryptography, E. Kranakis and P. Van Oorschot (ed.), Kluwer Academic Publishers, 1997, pp.41-54.
[SK96] B. Schneier and J. Kelsey, "Unbalanced Feistel Networks and Block Cipher Design", in Proceedings of the Third International Workshop on Fast Software Encryption, Cambridge, UK, February 1996, Springer, LNCS 1039, pp.121-144.
Communications Security Centre de la sécurité

Establishment
P.O. Box 9703

Terminal
Ottawa, Canada
K1G 3Z4
C.P. 9703

Centre de la sécurité des télécommunications

Terminus
Ottawa, Canada
K1G 3Z4

05 June 1998

Mr. Brian O'Higgins
Executive Vice President and
Chief Technology Officer
Entrust
750 Heron Road
Suite 800
Ottawa, Ontario
K1V 1A7

Dear Mr. O'Higgins,

I am very pleased to advise you that CSE has completed its evaluation of the CAST5 algorithm (80 and 128 bit versions). We have determined that CAST5 is suitable for the protection of all levels of Designated information within the GOC. A formal statement of this approval will be promulgated to Government of Canada departments and agencies in the very near future.

On behalf of the Communications Security Establishment please accept my congratulations.

David McKerrow
Communications Security Establishment Director General Information Technology Security

CAST-256
 Computational Efficiency

1. Efficiency Estimates for the NIST AES Analysis Platform

1.1 Platform Description

IBM-compatible PC, with an Intel Pentium Pro Processor, 200 MHz clock speed, 64 MB RAM, running Windows95.

1.2 Speed Estimates (in clock cycles)

Operation	128/128	192/128	256/128
Encrypt one data block:	1790	1790	1790
Decrypt one data block:	1790	1790	1790
Key setup:	9090	9090	9090
Algorithm setup:	0	0	0
Key change:	9090	9090	9090

1.3 Tradeoffs Between Speed and Memory

For environments in which memory is not a scarce resource, s-boxes S_{1} and S_{2} can be combined into three 16×32 s-boxes (one corresponding to $S_{1} \oplus S_{2}$, one corresponding to $S_{1}-S_{2}$, and one corresponding to $S_{1}+S_{2}$, for each of the three round function types). This saves one memory lookup and combining operation per round, which will result in a modest performance increase.

2. Efficiency Estimates for 8-Bit Processors

2.1 Platform Description

Motorola 6811 microprocessor, 2 MHz clock speed, assembly language implementation.
2.2 Speed Estimates (in clock cycles)

Operation	$\underline{128 / 128}$		$\underline{192 / 128}$	
Encrypt one data block:	26000		26000	
Decrypt one data block:	26000		26000	
Key setup:	110000		110000	
Algorithm setup:	0 ms		0 ms	
Key change:	110000		110000	0 ms
Ken	110000			

2.3 Tradeoffs Between Speed and Memory

None known.

3. Efficiency Estimates for Other Platforms

3.1 Platform Description

IBM-compatible PC, with an Intel Pentium II Processor, 300 MHz clock speed, 128 MB RAM, running Windows NT 4.0, assembly language implementation.

3.2 Speed Estimates (in clock cycles)

Operation	128/128	192/128	256/128
Encrypt one data block:	815	815	815
Decrypt one data block:	815	815	815
Key setup:	4130	4130	4130
Algorithm setup:	0	0	0
Key change:	4130	4130	4130

3.3 Tradeoffs Between Speed and Memory

For environments in which memory is not a scarce resource, s-boxes S_{1} and S_{2} can be combined into three 16×32 s-boxes (one corresponding to $S_{1} \oplus S_{2}$, one corresponding to $S_{1}-S_{2}$, and one corresponding to $S_{1}+S_{2}$, for each of the three round function types). This saves one memory lookup and combining operation per round, which will result in a modest performance increase.

4. Efficiency Estimates for Other Platforms

4.1 Platform Description

Sun UltraSparc 1, 167MHz clock speed, 124MB RAM, running Solaris 2.5.
4.2 Speed Estimates (in clock cycles)

Operation	128/128	192/128	256/128
Encrypt one data block:	1180	1180	1180
Decrypt one data block:	1180	1180	1180
Key setup:	5830	5830	5830
Algorithm setup:	0	0	0
Key change:	5830	5830	5830

4.3 Tradeoffs Between Speed and Memory

For environments in which memory is not a scarce resource, s-boxes S_{1} and S_{2} can be combined into three 16×32 s-boxes (one corresponding to $S_{1} \oplus S_{2}$, one corresponding to $S_{1}-S_{2}$, and one corresponding to $S_{1}+S_{2}$, for each of the three round function types). This saves one memory lookup and combining operation per round, which will result in a modest performance increase.

5. General Efficiency Comments

As will be noted in the tables given above, CAST-256 has the following features:

- it requires no algorithm setup time (e.g., there is no need to generate s-boxes or other tables, and no need to pre-compute values);
- decryption performance is identical to encryption performance;
- key change time is identical to key setup time;
- there is no penalty for key size differences (i.e., encryption / decryption performance and key setup performance are unaffected by whether the primary key is 128 bits, 256 bits, or a value in between).

CAST-256
 Algorithm Analysis

1. Analysis With Respect to Known Attacks

The classical attacks on ciphers are as follows: ciphertext only; known plaintext; and chosen plaintext. The advent of public-key cryptography added utility to the concept of a chosen ciphertext attack, but this appears to be of little added value in the analysis of symmetric ciphers. Research in the past decade or so has also introduced the notions of chosen key and related key attacks, which have enjoyed some success in the cryptanalysis of specific symmetric ciphers. Within the iterated symmetric ciphers (the class of algorithms to which CAST-256 belongs), the techniques known as linear cryptanalysis and differential cryptanalysis (along with their combinations and higher-orders) currently represent the most general and powerful instances of known plaintext and chosen plaintext attacks, respectively.

This section of the submission package examines the CAST-256 algorithm with respect to the families of cryptanalytic attack listed above.

1.1 Ciphertext Only Attack

No techniques are currently known that will allow an attacker to infer or derive information about the plaintext, the primary key, or any subset of round keys from any collection of ciphertext blocks. The one (unavoidable) exception to this is the technique applicable to all n-bit-block ciphers when used in Cipher-Block-Chaining (CBC) mode: once $2^{n / 2}$ blocks have been encrypted, with probability roughly $1 / 2$ (rapidly increasing as more blocks are encrypted) an XOR relationship between a particular pair of plaintexts will be known.

1.2 Known Plaintext Attack: Linear Cryptanalysis

Linear cryptanalysis [M94] attempts to exploit any high-probability occurrences of linear expressions of input, output, and round key bits in the round function of an iterated cipher. It has been approximated [M94] that the best linear expression for r-rounds of a cipher has a probability of being satisfied that is bounded as follows:

$$
\left|p_{L}-\frac{1}{2}\right| \leq 2^{\alpha-1} \cdot\left|p_{\beta}-\frac{1}{2}\right|^{\alpha}
$$

where p_{L} represents the probability that the linear expression holds, p_{β} represents the probability of the best linear approximation, and α represents the number of s-boxes involved in that linear approximation. This expression is based on the assumption of independent round keys such that the linear approximations of the s-boxes are independent. In an analogous way to "differentials" and "characteristics" in differential cryptanalysis, provable immunity in linear cryptanalysis relies on bounding the likelihood of an overall linear expression (sometimes referred to as the "linear hull") rather than any particular linear "characteristic". However, for many ciphers (including CAST-256) this is a difficult analytical task. What are typically considered, therefore, are the building blocks of an overall linear expression: the sequence of approximations of the round functions which result in the overall linear expression.

A basic linear attack typically uses a sequence of linear approximations of the rounds to create an overall linear expression involving subsets of plaintext and ciphertext bits. From this it is possible to derive the equivalent of one key bit represented as the XOR of a number of round key bits. In this case, it is shown [M94] that the number of known plaintexts required is approximately

$$
N_{L}=\left|p_{L}-\frac{1}{2}\right|^{-2}
$$

It can be shown that the best linear approximation has a probability given by

$$
\left|p_{\beta}-\frac{1}{2}\right|=\frac{2^{m-1}-N L_{\min }}{2^{m}}
$$

where m is the number of input bits to the s-box and $N L_{\text {min }}$ is the nonlinearity of the s-box [LHT97]. For the s-boxes of CAST-256, $m=8$ and $N L_{\text {min }}=74$. Furthermore, for the CAST-256 cipher, the best linear approximation appears to involve 4 s-boxes every 4 rounds such that the linear approximation of the round function for every $4^{\text {th }}$ round involves no output bits. That is, the linear expression used is $X_{i_{1}} \oplus X_{i_{2}} \oplus \ldots \oplus X_{i_{t}}$, where $X_{i_{j}}$ represents an input bit to the s-box. Hence, for an r-round linear approximation, $\alpha=r$. The number of known plaintexts required for a 48-round linear approximation of CAST-256, then, is approximately 2^{122}. Note that this is almost equal to the total number of plaintexts available $\left(2^{128}\right)$ and argues against the practicality of a linear attack on this cipher.

Furthermore, Youssef, et al, have proposed [YCT97] that a more accurate bound on the number of plaintexts required for linear cryptanalysis of a CAST cipher can be obtained by considering the combination of s-boxes in the round function rather than the individual s-boxes. In particular, they compute the value for $N L_{\mathrm{S}}$, the nonlinearity of the composite
32×32 s-box when the individual 8×32 s-boxes are combined using XOR. Using this in place of $N L_{\text {min }}$ in the equations above and setting $m=32$ and $\alpha=r / 2$ (since an r-round linear approximation must involve at least as many 32×32 s-boxes as $r / 2$ iterations of the best 2-round approximation) yields a number of known plaintexts required for a 48 -round linear approximation at more than 2^{174} (far beyond the number of plaintexts available). Note that experimental evidence suggests that combining s-boxes using mixed operations may increase the nonlinearity of the composite s-box even further.

It therefore appears that CAST-256 is immune to a linear cryptanalysis attack.

1.3 Chosen Plaintext Attack: Differential Cryptanalysis

Differential cryptanalysis [BS93] attempts to exploit any high-probability output differences resulting from particular input differences in the round function of an iterated cipher. A block cipher can be proved to be resistant to differential cryptanalysis if it can be shown that no high-probability differentials [LMM91] exist, where an i-round differential is defined to be the XOR of two outputs after i rounds, where the outputs correspond to two plaintexts with a given XOR.

In a good cipher the probability of all differentials should approach 2^{-N}, where N is the block size. Strictly speaking, differential cryptanalysis requires only the existence of a highly-probable differential to succeed. However, differentials can be viewed to be comprised of a number of possible characteristics, where a characteristic specifies the exact sequence of input and output XORs for each round to achieve the overall differential input and output XOR.

It is typically difficult to derive the probability of any particular differential and, in practice, it would be hard for a cryptanalyst to determine the existence of a highlyprobable differential without searching for highly-probable characteristics. Although it is often the case that an upper bound on the probability of a differential cannot be stated for a particular cipher (that is, resistance to a differential cryptanalytic attack cannot be proved), the probabilities of the most likely characteristics can be determined. These probabilities can then be used as a measure of the cipher's resistance to differential cryptanalysis.

As is common in the literature, the analysis here is based on the assumption that all round keys are independent (although this assumption is not always necessary; see [C97]) and that the occurrence of output XORs given particular input XORs is independent for different rounds. Under such conditions, the probability of an r-round characteristic is given by

$$
p_{\Omega_{r}}=\prod_{i=1}^{r} p_{i}
$$

where p_{i} represents the probability of the output XOR given the input XOR in round i. The best characteristics that can be constructed are typically iterative in nature. For the CAST-256 cipher with R rounds, the following appears to be the best possible r-round characteristic, where r is a multiple of 4 . (Note that the notation (W, X, Y, Z) represents XOR vectors for the four 32-bit sub-blocks in a CAST-256 round function input.)

$(0,0,0, \Delta)$	[input XOR to round 1]
$0 \leftarrow \Delta$ with probability p	[round 1]
$0 \leftarrow 0 \quad$ with probability 1	[round 2]
$0 \leftarrow 0 \quad$ with probability 1	[round 3]
$0 \leftarrow 0 \quad$ with probability 1	[round 4]
\ldots	repeat up to $R / 2$ rounds
$(0, \Delta, 0,0)$, or some variation	[input XOR to round $(R / 2+1)$]
$0 \leftarrow 0 \quad$ with probability 1	[round $(R / 2+1)$]
$0 \leftarrow 0 \quad$ with probability 1	[round $(R / 2+2)$]
$0 \leftarrow \Delta$ with probability p	[round $(R / 2+3)$]
$0 \leftarrow 0 \quad$ with probability 1	[round $(R / 2+4)$]
\ldots	repeat up to r rounds for r-round char.

The input XOR to round $(R / 2+1)$ will be a vector in which one of the sub-blocks is nonzero and the other three sub-blocks are zero (the precise variation which applies for a given cipher depends upon the value of R). Without loss of generality, the example $(0, \Delta, 0,0)$ is shown above.

As per the analysis and rationale given in [LHT97], the input-output XOR pair for a simplified CAST round function (i.e., one which does not include the key-dependent rotation, and for which the only s-box combining operation used is XOR) can be assumed to have a probability of $p \leq 2^{-14}$. This is based on the fact that all four s-boxes in the CAST round function are injective and the format of the XOR pair has the output XOR being equal to 0 . This leads to the conclusion that the best r-round iterated characteristic as shown above has a probability given by

$$
p_{\Omega_{r}} \leq\left(2^{-14}\right)^{1 / 4}
$$

In particular, a 40-round characteristic must have a probability less than or equal to 2^{-140} according to the assumptions of the analysis. This implies that the number of chosen plaintexts required for this attack would be greater than 2^{140} for the 48 -round cipher (substantially greater than the number of plaintexts available for a 128-bit block size).

It therefore appears that CAST-256 is immune to a differential cryptanalysis attack.

1.4 Chosen Key Attack

CAST-256 appears to be secure with respect to this attack. The use of a cipher (built around the CAST-128 set of round functions) as a key schedule gives confidence that no exploitable statistical correlation exists between the primary key and the set of generated round keys. Thus, allowing an attacker to choose a particular primary key difference appears to yield no exploitable similarities in the corresponding sets of round keys compared with the victim encrypting with two randomly-chosen primary keys.

1.5 Related Key Attack

CAST-256 appears to be secure with respect to this attack. The use of a cipher (built around the CAST-128 set of round functions) as a key schedule gives confidence that no exploitable statistical correlations exist within the set of generated round keys. Thus, this attack, which depends upon the use of a simple derivation algorithm for a round key from previous round keys, appears not to be applicable to CAST-256.

1.6 Enhancements to the Above Statistical Attacks: Combinations and Higher-Orders

The analysis given above for both linear and differential cryptanalysis applies to a greatly simplified version of the CAST-256 cipher. The actual cipher, which includes keydependent rotation and mixed operations in the round function (both for data masking and for s-box combination), appears to be much more difficult / impossible to attack using the methods as described in [M94] and [BS93] (see [A97] for some discussion of this). In particular, experiments in which two CAST-256 s-boxes are combined using addition or subtraction modulo 2^{32} show that the maximum value in the XOR difference distribution table is approximately 10% of the maximum that occurs when the s-boxes are combined using XOR. Experiments on combinations of three CAST-256 s-boxes are on-going, but thus far show similar results. This lends confidence that combinations of four s-boxes using mixed operations (as is done in the CAST-256 round function) are effective in increasing resistance to differential cryptanalysis.

The above experimental work [AM97] is supported by a new analytical result [O'C98], which shows that for a random n-bit permutation, the probability that the maximum entry in a differential table based on XOR differences is greater than a bound B_{n} approaches 1 as n grows, whereas the probability that the maximum entry in a table based on non-XOR differences (e.g., modular addition or multiplication) is greater than that same bound approaches 0 . Furthermore, the bound is accurate for the 8 -bit case. Thus, although the details of the analyzed structure differ slightly from the internals of the CAST-256 round
function as used in the above experiments, the conclusion is the same: using operations from different algebraic groups appears to be helpful in increasing resistance to differential cryptanalysis (by lowering the differential probability of a single round).

1.6.1 Combination Attacks

CAST-256 appears to be immune to both linear and differential cryptanalysis (requiring more plaintext than is available from the 128 -bit block size) and appears to be immune to both chosen and related key attacks (due to the absence of exploitable statistical correlations among its generated keys). Given this, it seems highly unlikely that various combination attacks (such as linear-differential, or differential-related-key) can have any measure of success.

It therefore appears that this cipher is immune to the combination attacks currently known in the literature.

1.6.2 Higher-Order Attacks

The concept of higher-order differentials has been introduced [L94, K95] and used to successfully cryptanalyze ciphers proved secure against ordinary differential cryptanalysis [JK97]. A simplified version of the CAST-128 cipher (one which uses XOR for all operations in the round function) has been examined with respect to the higher-order differential attack [MSK98]. It has been shown that this attack is successful up to 5 rounds, but cannot be extended to higher numbers of rounds. Furthermore, the introduction of the key-dependent rotation operation is effective in increasing the computational complexity of this attack. Finally, the use of operations from different algebraic groups "makes the degree too high to cryptanalyze by the higher-order differential attack" [MSK98], so that the attack cannot even be mounted on a 5-round version of the cipher.

It therefore appears that CAST-256 (which has 48 rounds and uses the CAST-128 round functions) is immune to a higher-order differential attack.

2. Statements Regarding Properties of Keys

This section provides statements regarding the following properties of keys with respect to CAST-256: weak keys, semi-weak keys, fixed points of a key, equivalent keys, and restrictions on key selection. It also includes a statement on complementation properties since this is sometimes related to the way that round keys are used within a DES-like cipher.

2.1 Weak Keys

None known. In the CAST-256 cipher, all keys appear to be of equivalent strength and are usable for double encryption (i.e., no key appears to be its own inverse).

2.2 Semi-Weak Keys

None known. In the CAST-256 cipher, there appear to be no pairs of keys which cannot be used for double encryption (i.e., there do not appear to be pairs of keys k_{i} and k_{j} such that k_{j} is the inverse of k_{i}).

2.3 Fixed Points of a key K

None known. From all evidence available thus far in the open literature, fixed points have only been easily found (i.e., requiring a level of effort for an n-bit block cipher of roughly $2^{n / 2}$ operations rather than 2^{n} operations) in DES-like ciphers for weak and semiweak keys. It therefore appears that CAST-256 has no easily-found fixed points for any key.

2.4 Equivalent Keys

None known. The key schedule defines a cipher with a fixed key (i.e., a permutation over the input space) so for two different CAST-256 initial keys to produce identical sets of round keys, the different cipher inputs would have to map to round function outputs (in every relevant round) that differed only in the 108 bits not used to produce round key bits. The probability of this occurring in each octave that produces round keys is $2^{108} / 2^{256}=$ 2^{-148}, so the probability that this occurs over the full set of round keys is $2^{-148^{*} 12}=2^{-1776}$ (essentially zero, since there are only 2^{256} possible initial keys).

2.5 Restrictions on Key Selection

None known. The key scheduling algorithm defines a symmetric block cipher with a fixed key where the CAST-256 primary key is used as the plaintext input. Because in this symmetric block cipher there are no restrictions on the input space (i.e., any plaintext can be encrypted), it follows that no restrictions are placed upon selection of CAST-256 primary keys.

2.6 Complementation Properties

None known. There appear to be no complementations of combinations of plaintext, key, and ciphertext that lead to identities. This is due to the complexity of the key scheduling operation (so that complementing the primary key leads to random-looking changes to all round keys) and also to the use of multiple operations to combine data, key, and s-boxes within the round functions (XOR , rotation, and addition and subtraction modulo 2^{32}).

3. Statement Regarding Trap-Doors

None known. There are several reasons to feel confident that there are no trap-doors in this cipher.

- CAST-256 uses the four round function s-boxes in CAST-128. The design criteria and construction procedure for these s-boxes have been published [A97, MA96] and the specific s-boxes themselves have been examined by a number of researchers.
- CAST-256 uses the three round functions in CAST-128. The design criteria for these round functions have been published [A97] and the specific round functions themselves have been examined by a number of researchers. Furthermore, the complexity introduced by the mixed operations in the round functions would seem to make it difficult to insert a trap-door of any kind.
- CAST-256 uses 48 rounds. Inserting a non-obvious trap-door that will carry through 48 rounds of the cipher would seem to be a formidable task.
- CAST-256 uses a significantly more complex key scheduling algorithm than DES. A trap-door in the final round that allows the attacker (i.e., the one knowing this trapdoor) to recover information about the final round key will be of little help in deriving either other round keys or the primary key. This contrasts with DES in which knowledge of any round key gives knowledge of the primary key with only a bruteforce search over 8 bits of key.

4. Publications Discussing or Analyzing Aspects of the CAST Design Procedure

C. Adams and S. Tavares, "The Use of Bent Sequences to Achieve Higher-Order Strict Avalanche Criterion in S-Box Design", Technical Report TR 90-013, Department of Electrical Engineering, Queen's University, Kingston, Ontario, January 1990.
C. Adams, "A Formal and Practical Design Procedure for Substitution-Permutation network Cryptosystems", Ph.D. Thesis, Dept. of Electrical Engineering, Queen's University, Kingston, Ontario, Canada, September, 1990.
C. Adams and S. Tavares, "The Structured Design of Cryptographically Good S-Boxes", Journal of Cryptology, vol. 3, no. 1, 1990, pp.27-41.
C. Adams and S. Tavares, "Designing S-Boxes for Ciphers Resistant to Differential Cryptanalysis", Proceedings of the 3rd Symposium on State and Progress of Research in Cryptography, Rome, Italy, 1993, pp.181-190.
C. Adams, "Simple and Effective Key Scheduling for Symmetric Ciphers", Workshop on Selected Areas in Cryptography, SAC' 94, Workshop Record, 1994, pp.129-133.
C. Adams, "Designing DES-like Ciphers with Guaranteed Resistance to Differential and Linear Attacks", Workshop on Selected Areas in Cryptography, SAC' 95, Workshop Record, 1995, pp.133-144.
C. Adams, "Constructing Symmetric Ciphers Using the CAST Design Procedure", Designs, Codes, and Cryptography, vol. 12, no. 3, 1997, pp.283-316.
H. Heys and S. Tavares, "On the Security of the CAST Encryption Algorithm", Proceedings of the Canadian Conference on Electrical and Computer Engineering, Halifax, NS, Canada, September 1994, pp.332-335.
J. Lee, "An investigation of some security aspects of the CAST encryption algorithm", M.Sc. Thesis, Dept. of Electrical and Computer Engineering, Queen's University, Kingston, Ontario, Canada, 1995.
J. Lee, H. Heys, and S. Tavares, "Resistance of a CAST-like Encryption Algorithm to Linear and Differential Cryptanalysis", Designs, Codes and Cryptography, vol. 12, no. 3, 1997, pp.267-282.
A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997, p. 281.
S. Mister and C. Adams, "Practical S-Box Design", Workshop on Selected Areas in Cryptography, SAC '96, Workshop Record, 1996, pp.61-76.
S. Moriai, T. Shimoyama, and T. Kaneko, "Higher Order Differential Attack of a CAST Cipher", Proceedings of the Fifth International Workshop on Fast Software Encryption, Paris, France, March 1998, LNCS 1372, Springer, pp.17-31.
V. Rijmen, B. Preneel and E. De Win "On weaknesses of non-surjective round functions", Designs, Codes and Cryptography, vol. 12, no. 3, 1997, pp.253-266.
B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C (2nd edition), John Wiley \& Sons, 1996, pp.334-335.
W. Stallings, Cryptography and Network Security: Principles and Practice, $2^{\text {nd }}$ Edition, Prentice Hall, 1998 (to appear).
A. Youssef, S. Tavares, S. Mister and C. Adams, "Linear approximation of Injective Sboxes", IEE Electronics Letters, vol.31, no. 25, 1995, pp.2168-2169.
A. Youssef, Z. Chen and S. Tavares, "Construction of Highly Nonlinear Injective S-boxes with Application to CAST-like Encryption Algorithm", Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE' 97), St. John's, NF, Canada, May 1997, pp.330-333.
A. Youssef, "Analysis and Design of Block Ciphers", Ph.D. Thesis, Dept. of Electrical and Computer Engineering, Queen's University, Kingston, Canada, 1997.
X. Zhu, "A New Class of Unbalanced CAST Ciphers and Its Security Analysis", M.Sc. Thesis, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, 1997.
X. Zhu and H. Heys, "The Analysis of a New Class of Unbalanced CAST Ciphers", Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE' 97), St. John's, NF, Canada, May 1997, pp.326-329.
[Please note that a number of the above papers are available at the following location: http://adonis.ee.queensu.ca:8000/cast/]

5. References

[A97] C. Adams, "Constructing Symmetric Ciphers Using the CAST Design Procedure", in Selected Areas in Cryptography, E. Kranakis and P. Van Oorschot (ed.), Kluwer Academic Publishers, 1997, pp.71-104.
[AM97] C. Adams and S. Mister, Preliminary experimental results concerning the mixing of operations from different algebraic groups and the contents of the resulting XOR difference distribution table (unpublished).
[BS93] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Standard, Springer, 1993.
[C97] A. Canteaut, "Differential Cryptanalysis of Feistel Ciphers and Differentially δ uniform Mappings", Workshop on Selected Areas in Cryptography, SAC '97, Workshop Record, 1997, pp.172-184.
[JK97] T. Jakobsen and L. Knudsen, "The Interpolation Attack on Block Ciphers", Proceedings of the Fourth International Workshop on Fast Software Encryption, Haifa, Israel, January 1997, LNCS 1267, Springer, pp.28-40.
[K95] L. Knudsen, "Truncated and Higher Order Differentials", Proceedings of the Second International Workshop on Fast Software Encryption, Leuven, Belgium, 1995, LNCS 1008, Springer, pp.196-211.
[L94] X. Lai, "Higher Order Derivatives and Differential Cryptanalysis", in Proceedings of the Symposium on Communication, Coding and Cryptography, in honor of James L. Massey on the occasion of his $60^{\text {th }}$ birthday, Feb. 10-13, 1994, Monte-Verita, Ascona, Switzerland, 1994.
[LMM91] X. Lai, J. Massey, and S. Murphy, "Markov Ciphers and Differential Cryptanalysis", Advances in Cryptology: Proceedings of Eurocrypt '91, Springer, 1991, pp.17-38.
[LHT97] J. Lee, H. Heys, and S. Tavares, "Resistance of a CAST-like Encryption Algorithm to Linear and Differential Cryptanalysis", Designs, Codes and Cryptography, vol. 12, no. 3, 1997, pp.267-282.
[M94] M. Matsui, "Linear Cryptanalysis Method for DES Cipher", Advances in Cryptology: Proceedings of Eurocrypt '93, Springer, 1994, pp.386-397.
[MA96] S. Mister and C. Adams, "Practical S-Box Design", Workshop on Selected Areas in Cryptography, SAC '96, Workshop Record, 1996, pp.61-76.
[MSK98] S. Moriai, T. Shimoyama, and T. Kaneko, "Higher Order Differential Attack of a CAST Cipher", Proceedings of the Fifth International Workshop on Fast Software Encryption, Paris, France, March 1998, LNCS 1372, Springer, pp.1731.
[O'C98] L. O'Connor, Preliminary analytical results concerning the mixing of operations from different algebraic groups and the maximum value of the resulting XOR difference distribution table (unpublished).
[YCT97]A. Youssef, Z. Chen and S. Tavares, "Construction of Highly Nonlinear Injective S-boxes with Application to CAST-like Encryption Algorithm", Proceedings of the Canadian Conference on Electrical and Computer Engineering (CCECE' 97), St. John's, NF, Canada, May 1997, pp.330-333.

[^0]: 55889c94 72fc0651 $18 d c d b 7 d$ a1d6eff3 ba83ccb3 e0c3cdfb 25a1ff41 e180f806 7992926924 fa9f7b 5d681121 c866c359 $361 e 3084$ e4eb573b a0e3df79 ba6cf38c d9e0a227 4ec73a34 721d9bfd a58684bb d5a6c252 e49754bd 21f043b7 e5d05860 83ca6b94 2d6ed23b 5ee22b95 5f0e5304 $8049 a 7 e 8$ 22b7da7b a4b09f6b 1ca815cf b4542835 9f63293c 31a70850 60930£13

